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Abstract: The performance of several 1,3,2-oxazaborolidines as chiral catalysts in the 
reduction of acetophenone has been compared, to gain insight into the more relevant structural 
factors as far as yield and enantioselectivity are concerned. B-Alkyl-4.5,~~triphenyl-1,3,2- 
oxazaboroliiines have emerged as effective catalysts for this reaction when nitrogen is not 
substituted. The origin of the enantioselectivity for this kind of catalysts is discussed. 

Enantioselective methodology is an active field in Organic Chemistry and much effort has been devoted to 
the development of efficient catalytic versions of synthetically useful reactions. Regarding the enantioselective 
ketone reduction methods, one of the more successful has been based on the use of borane and a chiral 1,2- 
aminoalcohol as pioneered by Itsuno et al.1 Corey et al? soon afterwards isolated the oxazaborolidine derived 
from a,a-diphenyl-2-pyrrolidinemethanol and applied it in the reduction of ketones with borane (CBS 
method). Ever since, other chiraI 1,3,2-oxaz&orolidines have been repotted by several groups.3 

In connection with a research line aimed at obtaining choral auxiliaries from non-expensive natural 
products, avoiding either tedious stepwise syntheses or racemic resolutions, we have prepared ephedrine- 
derived (la-g) and pseudoephedrine-derived (2) 1,3,2-oxazaborolidine&5 and we have evaluated their 
performance as reagents in the reduction of acetophenone with BH3:Me# (or BI-+:THF) as the source of 
borane. 
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In practice, to either 0.2 or 1.0 mmol of oxazaborolidines (la-g, 2) in 3 ml of anh. THF, maintained at 
0°C under Ar, 1.2 mmol of BHs:Me$ (or, indistinctly, BI-L+THF) was added;6 ten min later on, 1 mmol of 

acetophenone was introduced, and the reaction was monitored by TLC. The main results are summarised in 
Table 1. Itistobenotedthatz 
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(i) The reaction rate decreases with B-substitution (compare entries 3 and 4 with entry 1, corresponding to 

the BH derivative la) but the e.e. does not practically change. This agrees with the results reported for oxaza- 
borolidines arising from diphenylproliiol.~7 

(ii) Although not pointed out in Table 1 for the sake of simplicity, le, lf, and Ig gave poor reduction 

yields (15~60%) and very low e-e. (10-228) values. Thus, large subs&tents and/or electron-withdrawing 

groups on the nitrogen are not suitable, likely because the N-BHs interaction is disfavoured. This is in 

accordance with the mechanism proposed by Corey et al.%* for analogous reactions, in which the borane 

(R2BH) is activated by coordination to the nitrogen. In this connection. we have observed by **B NMR 

spectroscopy that, in mixing BHs:THF with equimolar amounts of either Id, le, lf, or lg in THF, the 

signals corresponding to BH&T’HF (ca. -1 ppm, external ref.= BF3:Et20) and the oxazaborolidines (30-35 

ppm) did not change; in fact, quartet signals at ca. -15 ppm, as expected for the complexes 1d:BHs and so on, 

did not appear. 

Table 1. Reduction of acetophenone with BH8:Me2S in the presence of l-2 

Enay Reagent (equiv.) t (min)a Yield (%)b e.e. (W config. 

1 la (1) <5 95 12 R 
2 la (0.2) 10 90 63 R 

3 lb (1) 45 98 69 R 

46 lc (1) 60 78 68 R 

sa lc (0.2) 60 74 66 R 

6 rd (1) 60 n 10 R 

I 2(l) <5 90 22 s 

* Fit TLC control 5 min after the ketone. addition. b Isolated yields. Crude yields were 
quantitative (TLC). C ~etenniaed from the IH-NMR spectrum of MEL&W’s ester. d Reaction 

was qdenched after 60 min; 10-l% of ketone was recovered. 

(iii) The scarce enuntioselectivity induced by 2, as well as the fact that enantiomer S slightly predominates 

for the first time, must he attributed to the phenyl group (now rrans to CHs). Whereas in compound 1 the 

approach of both borahe and acetophenone is towards the a face, in 2 the complexes arising from approaches 

to u and g faces (see 3 and 4, respectively) may have similar energies. Apparently, the transition state related 

to complex 4, of a bit lower energy, is responsible for the slight e.e. in favour of (S)- 1 -phenylethanol. 

For future work, it was also interesting to elucidate the causes of the observed enantioselectivity in la and 
related cases. A complex like 5, in agreement with literature precedents,z* explains the origin of the major 

enantiomer via hydride transfer from N-BHs to carbonyl groups. However, in our opinion, the main question 

is which complex (6,7, or 8) gives rise to the minor enantiomer. 
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(R)-1-phenylelhanol (S)-1 -phenylethanol (S)-1-phenylethanol (S)-1-phenylethanol 

Really, (S)-1-phenylethanol could come from 6, but this may be ruled out by the fact that different 
substituents on the boron do not change significantly the enantioselectivity (see entries l-5 of Table 1). 
Previous work3 has demonstrated that, even though complexation through the Q face is desired, it is necessary 
a large substituent on the u face of position 5 to enhance the enantioselectivity. This requirement may be related 
with the convenience of either blocking the oxygen atom (to destabilize intermediate 7) or disfavouring an 
arrangement like 8 in which the methyl group is located inside the oxazaborolidine ring, due to the steric 
repulsion between that methyl group and the a-substituent at C-5, as shown in 9. 

9 Ph 

To discard one or another of these two possibilities, i.e. whether enantiomer S arises from 7 or 8, as well 
as to look for a better catalyst, we have synthesised oxaxaborohdines 10-13.‘” 
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Compounds 1Oa and lob did not show any catalytic activity; this fact suggests that the minor stereoi- 
did not come from the 0-BH3 complex 7. but from the con&x with an “endo” confotzugtion 182.” On the 
other hand, oxazaborolidine 11 afforded (R)-1-phenylethanol in 91% yield and with 88% e.e. The 
comparison of 11 and lc mnfiis that the presence of an a-phenyl group improves the enantioselectivity. By 
contrast, 12 showed a pear catalytic activity, a fact that may be due to the steric interaction between the methyl 
and phenyl groups in the assumed complex with BH3 (see 12:BH3). B-Butyl-4,5,5-triphenyl-1,3,2-oxaxa- 
borolidine 13 gave the best result in the acetophenone reduction: 90% yield aad %% e.e. 
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In summary, the experimental results suggest that, in the oxazaborolidine-catalysed reduction of 
acetophenone with borane, the minor stereoisomer arises from an “endo” conformation such as 8/9. Thus, to 
improve the stereoselectivity, this arrangement should be hindered. From many points of view (availability of 
chiral precursors, easy preparation of catalysts, efficiency, and selectivity) B-alkyl-4,5,5-triphenyl-1.3,2- 
oxazaborolidines (e.g. 13) seem to be reagents of choice for this kind of reactions. Synthetic aplications of 
these catalysts are in course. 
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